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BACKGROUND: This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse refer-
ence populations provide an opportunity to model environmental exposures and gene–environment interactions in human disease and to inform human
health risk assessment.
OBJECTIVES: This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel
(MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models.
METHODS: This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use
of these mouse population resources in each step of the risk assessment paradigm.
DISCUSSION: These unique resources have the potential to be powerful tools for generating hypotheses related to gene–environment interplay in
human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environ-
mental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states.

CONCLUSIONS: These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals
that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce
uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274

Introduction
Environmental scientists worldwide are tasked with assessing health
risks of environmental exposures to chemicals, and the methodol-
ogy used to assess risks is continually evolving. Chemical risk
assessments involve evaluation of exposure and prediction of
health risks and outcomes with the goal to inform decision mak-
ing to control or otherwise respond to environmental hazards.
Biological variability is an important factor in defining human
responses to chemical exposures and variability—of various eti-
ologies—can contribute to whether an individual is susceptible
or resistant to an adverse outcome. Variation in response to
chemicals is determined by both extrinsic (e.g., co-morbidities,
exposure dose concentration, co-exposures, nutrition, and psy-
chosocial stressors) and intrinsic (e.g., genetic sequence or epige-
netic variation, age/life stage, sex) factors (Zeise et al. 2013).

Because assessment of risk inherently involves variability in
responses, the methods used in risk assessment must be designed
to quantitatively address population variation with precision.
Uncertainties exist, in the estimation of exposures, the identifica-
tion and measurement of health effects associated with exposures,
and the methodologies used to assess and characterize population
and occupational risks. The current risk assessment paradigm uti-
lizes a standardized uncertainty or threshold factor to account for

variability in cases where population-based data are unavailable
(U.S. EPA 2014). As methods for assessing population health
risks evolve, an emerging idea is to actively consider multiple
determinants of population health and their interactions prior to
the design of testing strategies. Advances in molecular methods
and an interest in pathway-based risk assessments have driven in-
terest in development of a next generation “NextGen” framework
or risk assessment (Cote et al. 2016).

Advanced risk assessment techniques, a population health
approach, and the NextGen framework for risk science are crucial
elements for the protection of particularly sensitive individuals
within exposed populations. Indeed, the challenges and opportu-
nities to address human variability in NextGen risk assessments
was recently reviewed extensively by Zeise and coauthors (Zeise
et al. 2013). Furthermore, the benefits of understanding gene–
environment connections and understanding their implication for
risk management has been argued to be an integral component of
NextGen risk strategies (Krewski et al. 2014).

To implement this new strategy, new tools are necessary for
assessing population-level responses for which the determinants
of health outcomes can be multifactorial. Genetic variation con-
tributes substantially to interindividual differences in susceptibil-
ity to toxicant-induced adverse health events (Collins et al.
2016). Recent data suggest that an improved understanding of the
genetic variability of toxicant responses will enable more accu-
rate chemical toxicity assessments, and methods to enable use of
population-level data to predict toxicity risks are an area of active
investigation (Eduati et al. 2015). Development of a variety of
tools is necessary to identify the range of human responses to
chemical hazards.

Epidemiological studies in humans are costly, time consuming,
and often confounded by other factors such as age, co-morbidities,
and exposures to a wide variety of chemical exposures over the
lifetime of the individual. Studies of human populations will
always provide the strongest causal evidence of toxicity when
they are available, but when they are not, the use of genetically
diverse mouse populations can be a powerful tool to model
human population responses. When human evidence is limited,
experimental models can identify sensitivities of relevance to
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humans and support or further characterize findings in human
populations, strengthening the biological plausibility of the evi-
dence in humans. Rodent population resources, particularly
involving the mouse, are being developed and are increasingly
well characterized for numerous traits. An advantage of this
approach is the inclusion of both genetically sensitive and resist-
ant mice that may react more “like” humans at a given dose than
would be possible in a conventional study using a single rodent
strain or classical outbred stock. Newly available mouse popula-
tions, as will be discussed in this review, harbor genetic variation
that is comparable to the human population, but with an advant-
age that variation is more randomized than in humans, meaning
more information about variability can be obtained in a smaller
cohort of mice than would be needed for a human epidemiologi-
cal study.

To explore opportunities for the use of the population-based
rodent models in the context of environmental health science
research, the National Institute for Environmental Health
Sciences held a workshop on the topic of “population-based
rodent resources for environmental health sciences.” What fol-
lows is not a summary of the meeting; however, the authors are
indebted to the workshop’s many excellent speakers for guiding
thinking around key concepts in the present manuscript. This
review will attempt to describe these population-based rodent
resources and their potential uses within the risk assessment
framework.

Current Rodent Models Utilized for Chemical
Toxicology Studies
Classical toxicological testing in animal models has traditionally
been conducted in rodent species; however, rodent strains that
have been classically used contain no genetic diversity because
they were intentionally inbred to fix the genome and reduce vari-
ability in measurements. In the case of the National Toxicology
Program (NTP), the preferred rodent models are the B6C3F1
mouse (an F1 hybrid cross between C57BL/6 and C3H inbred
mouse strains) and the Fisher 344 (F344) inbred rat. Rodents are
inbred via brother–sister mating for at least 20 generations to fix
the genome. Owing to extensive historical pathology data from
studies using these rodents, B6C3F1 mice and F344 rats can thus
be thought of as defined reagents. There are advantages to stand-
ardization of genetic context—in this case, reproducibility is
achieved because B6C3F1 mice and F344 rats are the equivalents
of genetic clones, in which each individual is genetically the
same (isogenic). Because of this isogenicity, data are largely re-
producible across experiments, although epigenetic modifiers and
environmental variables may affect experimental outcomes to
varying extents. A reasonable argument for using inbred rodent
strains is extensive historical experience with these models,
which provides a context for comparing data across chemicals
and a knowledge base of background lesions that informs patho-
logical determination of chemical response. Historical databases
built on conventional rodent strain data conveniently enable
cross-study comparisons. There are also advantages in terms of
low variability within quantitative dose–response curves that can
be generated using these traditional resources.

Although the F344/N rat has been used for the rodent bioas-
say by NTP for over 30 y, this strain has developed many health
and reproductive issues over time. The NTP convened a work-
shop in 2005 entitled “Animal Models for the NTP Cancer
Bioassay: Strains and Stocks—Should We Switch?” to explore
the use of alternative rat models for toxicity studies. Based on the
recommendations from this workshop, NTP made the decision to
focus on the use of the Envigo Hsd:Sprague-Dawley (SD) rat as
the primary rat model for initially evaluating a test compound or

chemical. The SD rat is outbred, which affords some genetic di-
versity, and it is also one of the most commonly used rat stocks
in pharmaceutical testing.

Many investigators assume that conventional outbred stocks,
such as SD rats, reflect substantial genetic diversity. SD rats, like
most outbred stocks, are genetically undefined in that each animal
is genetically distinct and labile in terms of genetic changes based
on random genetic drift (Festing 2014). Several reports have sug-
gested that the use of classical outbred stocks makes many toxi-
cology experiments less sensitive and complicates assessment of
genetic from nongenetic variation in contributing to the toxicity
outcome (Festing 2016). Specifically, classical outbred stocks
such as SD rats are thought to add more experimental noise in
terms of spontaneous background findings, potentially complicat-
ing estimation of quantitative characteristics. However, a tradeoff
is a greater ability to detect chemical hazards that might other-
wise be missed in a single inbred strain. Inbred strains are more
stable, better defined, and have more extensive background pa-
thology data in archives as compared with classical outbred
stocks. Thus, toxicity screening designs have been suggested that
use small numbers of inbred animals of several mouse strains to-
gether. This approach would reveal genetic variation that is not
seen when using a single (conventional) outbred stock and deci-
sions could be based on either the most susceptible strains alone
or on the population as a whole.

Another major drawback of the single-strain approach is that
mice or rats with different genetic backgrounds may be more or
less sensitive to the adverse health effects of the test chemical. In
fact, many recent studies have shown that genetic background
can have a major effect on toxicity outcomes and on the ability to
detect human-relevant adverse effects. For example, in a recent
study that exposed 35 different inbred strains of mice (along with
B6C3F1/J mice) to acetaminophen, it was found that some mouse
strains are resistant to acetaminophen-induced hepatotoxicity,
whereas other strains sustain upwards of 80% liver necrosis at the
same dose level (with B6C3F1 mice falling at the high end of sen-
sitivity) (Harrill et al. 2009b). Similar investigations have found
that genetic background affects adverse outcomes of exposures to
environmental contaminants, such as liver toxicity associated with
2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) (Nguyen et al. 2016)
and renal toxicity induced by trichloroethylene (Yoo et al. 2015).

Description of Different Population Models

Mouse Diversity Panel
A mouse diversity panel (MDP) is a common and straightforward
method for measuring responses across a genetically diverse pop-
ulation. MDPs are comprised of approximately 20–40 inbred
strains of Mus musculus (M. m.) domesticus and M. m. musculus
subspecific origin, typically inclusive of commonly utilized labo-
ratory strains such as C57BL/6J and Balb/cJ, although the exact
strain composition may vary (Figure 1). A related resource, the
Mouse Hybrid Diversity Panel (MHDP), is comprised of 30 classi-
cal inbred strains and approximately 70 recombinant inbred (RI)
strains primarily derived from crossing C57BL=6J × DBA=2J
(B×D strains) and A=J ×C57BL=6J (A×B and B×A RI strains)
(Lusis et al. 2016). A benefit of these resources is that mice
within a given strain are genetically identical and reproducible.
However, a major drawback is that many classical strains are
closely related genetically due to their derivation from common
ancestor strains or stocks. Thus, strain selection becomes impor-
tant to maximize genetic diversity across the panel of strains sur-
veyed, and genetic variation among classical strains is markedly
lower than that present in rationally designed RI strain panels.
Despite these limitations, MDP studies have yielded important
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mechanistic insights into toxicity outcomes associated with phar-
maceutical drugs and chemicals, several of which will be
reviewed in later sections.

An advantage of using a mouse population is an ability to
exploit the natural genetic variation to identify genetic polymor-
phisms that drive differential susceptibility to toxicity. An under-
standing of genetic drivers of toxicity can inform identification of
sensitive subpopulations and can also provide insight into the tox-
icity mode of action. For studies in which genetic analysis is
desired (identification of quantitative trait loci; QTL), choice of
strains should fall within those for which genetic sequence data
are available and with good coverage of polymorphisms through-
out the genome. Traditional inbred M. m. musculus strains have
minimal levels of intrastrain polymorphisms. Thus, it is prudent
to select panels that include M. m. musculus strains and M. m.
domesticus strains. The inclusion of M. m. castaneous strains in
an MDP can be detrimental to a genetic mapping study in that
many false positive associations may arise simply due to the
genetic divergence of these lines. However, it should be men-
tioned that there have been tools developed to address the con-
founding effects of population structure across inbred strains; a
popular statistical method for QTL mapping for this population
is Efficient Mixed-Model Association (EMMA), available as an
R package (Kang et al. 2008).

Although there are pitfalls to using multiple classical inbred
lines for genetic mapping studies, there are also some positive
aspects to using this population for toxicology. The first is the
availability of historical data for many strains (for example,
C57BL/6J or Balb/cJ) that may be useful to replicate. Data for
many strains may be obtained in the public Mouse Phenome
Database (http://phenome.jax.org) (Grubb et al. 2014). In addi-
tion, there is the availability of mouse embryonic fibroblast
(MEF) lines for many strains, which may be an attractive choice
for in vitro analyses while MEF and stem cell lines for next-
generation mouse populations are still under development
(Suzuki et al. 2014). It is important to note that strains that have a
similar name (e.g., C57BL/6N and C57BL/6, for which the last
letter indicates that these are closely related but not genetically
identical substrains) can have genetic sequence differences owing
to genetic drift that has occurred where the population is housed
(Festing 2010). There is also the potential for genetic contamina-
tion, spontaneous mutations, and genetic drift to occur even in an
established line if the strain has been maintained over many gen-
erations (Wiles and Taft 2010). Therefore, it is important to have
consistency when obtaining inbred strains. For these reasons,

some vendors now “reset” strains after a defined number of
breeding generations using cryopreserved embryos derived from
the original stock.

A major consideration for using conventional strains is their
availability. Although adult mice of many strains can be pur-
chased in small numbers from several vendors, cost varies widely
by strain owing to strain demand, special housing conditions
needed for certain strains, and breeding success. Inbred strains
are also subject to reduced fecundity and reduction in general
health, which has the potential to cause unexpected results in a
toxicity study.

Collaborative Cross and Diversity Outbred Mice
Newly developed population-based rodent resources were
designed to reflect the genetic diversity of the human population;
these resources provide opportunities to investigate population-
level responses in a variety of contexts, including disease suscep-
tibility, aging, and adverse responses to chemicals. However, it
should be noted that these mouse reference populations were
largely intended to be utilized for the identification of genetic
risk factors of various pathophysiological states and disease sus-
ceptibility—where possible, we direct the reader to tools and
resources that are available to facilitate genetic sequence investi-
gations. Nevertheless, these “next generation” mouse reference
populations may be an asset for the fields of environmental health
science and toxicology in a variety of contexts throughout the
risk assessment paradigm, and we have highlighted proof-of-
concept experiments in the following sections.

In order to develop next-generation rodent resources, the
Complex Trait Consortium spearheaded an effort to develop
mouse populations that a) encompassed a maximum of genetic
diversity available in the Mus genus, b) had variation randomized
throughout the genome to improve the ability to detect the
genetic basis of a biological observation, c) had a sufficient sam-
ple size to power statistical analyses with a lack of minor alleles
prevalent in human populations, and d) lacked minor (low fre-
quency) alleles (Churchill et al. 2004; Churchill et al. 2012). This
effort resulted in two sister populations, the Collaborative Cross
(CC) and the Diversity Outbred (DO) (Figure 1). Both CC and
DO populations arise from the same eight genetic cofounder
strains that were selected to maximize the amount of genetic di-
versity in the resulting population. Of these founder strains, five
represent the M. m. musculus subspecies (129S1/SvImJ, A/J,
NOD/ShiLtJ, and NZO/H1LtJ), with the remainder of M. m.

Figure 1. Characteristics of the MDP, DO, and CC RI lines.
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castaneous (CAST/EiJ), and more recently wild-derived M. m.
musculus and M. m. domesticus subspecific origin (PWK/PhJ and
WSB/EiJ). The CC mice consist of recombinant inbred (RI) lines
(also called strains) derived from the eight-way cross (CC RI
lines); breeding trios of the CC RI lines are available from the
colonies housed at the University of North Carolina at Chapel
Hill, Chapel Hill, North Carolina (CC-UNC lines) and Tel Aviv
University, Tel Aviv, Israel (CC-TAU lines). An advantage of
using CC mice for experimental research is the reproducibility of
the CC RI lines and public availability of databases on genetic
and phenotypic information in each line.

All CC RI lines were independently bred in a scheme that
combined the genetic variation present in the eight founder
strains into CC RI lines over three generations followed by
inbreeding within each breeding funnel to homozygosity (Iraqi
et al. 2014) (Collaborative Cross Consortium 2012). CC RI lines
are considered complete once they have reached 98% homo-
zygosity and are considered distributable for researchers at 90%
homozygosity, which is verified using genetic information
obtained via specialized genotyping arrays for this purpose [i.e.,
the Mouse Universal Genotyping Array (Yang et al. 2009)].
Owing to the availability of genotyping and bioinformatics
resources for CC and DO mice, users will have access to an un-
precedented level of detail on the genetic sequences of the CC RI
lines (Welsh et al. 2012). The CC RI lines have great potential to
be utilized for both toxicity analysis and for pharmaceutical effi-
cacy studies involving certain disease states—as more phenotypic
information is collated from this population, information regard-
ing spontaneous disease will become more readily available. A
positive aspect of the CC RI lines is the reproducibility of mem-
bers within a line, providing the ability to repeat exposures or test
multiple doses in the same genetic context. This also means that
if a certain CC RI line is identified as a suitable model for the
desired outcome, there is a potential to test next-in-class drugs or
chemical isomers in a single selected CC RI strain. The current
limitations in availability of animals may affect study timelines.

CC RI lines have been successfully utilized to dissect genetic
traits in several contexts. Simulation analysis has proposed that
an “idealized minimum” number of animals for a genetic study
involving CC RI lines is 128 lines. For a QTL with additive
effects, using 128 strains enables detection of a major QTL with
an effect size of 0.25 and 90% power (Tsaih et al. 2005). For
comparison, the same statistical model indicates that power is
reduced to 60% when the CC panel is reduced to 64 strains.
Another recent retrospective analysis that included metrics of
heritability and the genetic coefficient of variation confirmed that
it may be possible to identify a strong QTL that maps to a resolu-
tion as narrow as 1Mb with as few as 100 CC RI lines (Iraqi
et al. 2014). It should be noted that the large numbers of mice
needed to power a genetics study will, in most cases, far exceed
the number of mice needed for typical toxicity testing study.

There are at least two types of genetic studies that have been
proposed for CC RI lines. The first type involves genomic map-
ping of traits measured directly in the standard CC RI lines as
described above. A variant of this analysis that has been proposed
is called a recombinant inbred intercross or RIX (formally known
as a diallel cross). By generating RIX lines, investigators can
evaluate parent-of-origin effects, as well as determine whether a
gene variant is dominant or recessive, which cannot be detected
in inbred parental CCs (it should be noted that these effects may
also be evaluated in the DO). An advantage of utilizing RIX lines
is that the mice are no longer fully inbred, which can improve the
vitality of the animals by introducing hybrid vigor. RIX (like F1
hybrids in general) have lower phenotypic variances than their pa-
rental inbreds, which increases phenotyping accuracy. Although

the combinatorial effect of a RIX cross increases the number of
unique recombinant genomes available (Threadgill et al. 2002;
Zou et al. 2005), the increase does not overcome the limitation of
having a small panel of RI lines (Tsaih et al. 2005). An advantage
of a RIX cross is that the frequency of false positive associations
that result from nonsyntenic lineages is reduced in genomic map-
ping analysis. However, studies that investigated the utility of
using RIX lines versus traditional RI panels have concluded that
there appears to be little advantage of RIX crosses for genomic
mapping analysis (Tsaih et al. 2005).

The UNC Computational Genetics group has developed a
suite of tools for viewing and analyzing genetic data from the CC
RI lines. One such tool is TreeQA, which is a tree-based associa-
tion mapping method that can incorporate evolutionary history of
the genome into the analysis. Essentially, the algorithm utilizes
local phylogenies constructed in genomic regions that exhibit no
evidence of historical recombination (Pan et al. 2009). Other
packages that have been utilized for the analysis include HAPPY.
HBREM (Vered et al. 2014), which employs a logistic regression
model to fit covariates. Residuals from the model are then used
as the response variable for QTL mapping using linear regres-
sion, with the Bayesian random effects model HBREM used to
estimate individual haplotype effects (Durrant and Mott 2010).

DO mice are a complementary mouse population model that
was derived through the CC development pipeline. DO mice are
a heterogeneous stock derived from the same eight founder
strains as the CC. Independent lineages (144 in total) were ini-
tially selected from the CC breeding colony while the lines were
still segregating, and these mice were utilized to seed the DO
population. Each DO mouse is genetically unique. DO mice are
currently maintained as a randomized breeding colony of 175
breeding pairs. DO mice are robust and breed efficiently, averag-
ing seven pups ( ± 2:4 SD) in first litters (Churchill et al. 2012).
Each DO mouse harbors a high level of heterozygosity, with the
population at large providing a vast array of allelic combinations.
This level of heterozygosity is maintained by randomly selecting
a male and female from each first litter and assigning to a new
breeding pair to generate the next generation. Such a mating
scheme doubles the effective population size, minimizes genetic
drift, and minimizes selection on the allele frequencies within the
population (Rockman and Kruglyak 2008).

The likelihood of severe morbidity and mortality may be
lower in the DO as compared with CC or MDP mice, owing to
hybrid vigor associated with a high level of heterozygosity. One
example of this phenomenon occurred in the MDP investigation
of isoniazid-induced hepatic steatosis. In that study, drug-treated
members of two inbred strains (P/J and WSB/EiJ) had to be
excluded from subsequent analyses owing to mortality that was
not associated with liver injury (Church et al. 2014). In studies of
DO mice using the same dose level and longer exposures to isoni-
azid, no mortality has been observed (A.H. Harrill, unpublished
data, 2017). For these reasons, DO mice may offer advantages for
toxicology studies in which hazard identification is the main
goal, particularly in cases where toxicity mode of action is not
known. Because the DO mice breed well, with high fecundity,
and are bred in three to four large breeding waves per year, it is
more straightforward to obtain a large cohort of similarly aged
DO mice as compared with CC RI lines.

A common question is whether researchers should first screen
a chemical in members of the eight genetic founder strains of the
CC and DO to assess study feasibility. In cases where some data
exist in one of the founders already (for example, C57BL/6J), it
may be reasonable to assess a dose response across the founders
to guide dose selection for an expanded population. However, use
of the founder strains to inform target organs or dose selection in a
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CC or DO study may not be productive. In our studies (A.H.
Harrill, unpublished data, 2017), we have observed a lack of toxic-
ity in the founders for drugs and doses where a significant hepatic
or renal toxicity response is observed in the DO. In addition, it has
been observed by others that the phenotypic variation in the CC
(and DO) quite often exceeds that of the founder strains (Philip
et al. 2011). An alternative, and perhaps more straightforward
strategy, is to conduct a dose range finding study in a modestly
sized cohort of DO mice (with the cohort size based on appropriate
power calculations). As more studies are conducted using the DO
and CC RI lines and data are deposited in online public reposito-
ries soon, power calculations will become more straightforward.

Going beyond classical toxicity studies, CC and DO mice are
being increasingly utilized for a variety of genome-wide associa-
tion study (GWA or GWAS), in which a genome-wide set of
genetic variants is analyzed in different individuals to identify
regions of the genome that contain sequence variation that signif-
icantly influences the experimental outcome (e.g., degree of tox-
icity as measured by a biomarker). DO mice typically require
greater numbers of animals for a GWA study as compared with
CC mice. The reason is that DO mice have a high level of hetero-
zygosity, whereas CC mice are largely homozygous at every
locus. A major consideration for the sample size is that the mag-
nitude of the effect of a gene variant is often not known a priori.
Therefore, a reasonable experimental strategy could be to start
with fewer numbers of DO animals, analyze the GWAS data, and
then add more to the study if the necessary power was not
achieved. This strategy is more amenable to DO mice now,
although it is expected that more CC RI lines will become avail-
able in the future to bolster experimentation with CC RI lines. For
DO mice, simulated power analyses indicate that as few as 200
mice can be utilized to detect QTL regions with large effects. In
contrast, loci that account for <5% of trait variance may require
up to 1,000 mice (Gatti et al. 2014b). However, it is unlikely that
loci with very minor effects will have utility as a genetic marker
for toxicity susceptibility, and achieving power to detect such a
minor effect may be unproductive with regards to desired study
outcomes. On the other hand, for projects where it is desirable to
explain as much of the trait variance as possible (e.g., for a neuro-
behavioral outcome), larger numbers of animals may be prefera-
ble. In routine studies to identify toxicogenetic markers for
susceptibility to xenobiotic toxicity, a rule of thumb is to start with
400 DO mice. Power simulations indicate that with 400 mice,
QTL can be detected (at a=0:05) that account for 10% of the phe-
notypic variance with 80% power. Based on existing data from
DO mice at generations 7 and 8 of outbreeding, 400 mice provide
a median recombination block width of 0:33Mb (Gatti et al.
2014b). This resolution is fine enough to map loci down to a hand-
ful of genes. A caveat is that, in practice, the local linkage disequi-
librium structure will also influence the QTL width.

The currently used software for GWA analysis in DO mice is a
Bioconductor package called DOQTL, which can be utilized in R
(Gatti et al. 2014a; Gatti et al. 2014b). DOQTL provides a suite of
tools for processing DO genotype data, reconstructing individual
genomes by inferring sequences using haplotypes from the founder
strains, and performing QTL analysis. In addition, the package allows
for assessment of founder haplotype effects on the QTL interval.

Use of Mouse Populations in a Risk
Assessment Framework
Although many of the studies published using the CC or DO
mice thus far have focused on genetic analyses, there are many
study types that can be performed using these populations to
inform the risk assessment process. In the following sections, we
provide recommendations for the utility of these populations at

various steps in the process and provide examples of how
researchers have applied these models for illustrative purposes. A
summary of these recommendations is provided in Figure 2.

Exposure Assessment
Exposure assessment describes how and to what extent humans
come into contact with hazards; the principles, concepts, and
methods have been elucidated by regulatory agencies, such as the
U.S. EPA (1992). The internal dose of a chemical is a key com-
ponent of exposure; internal dose is the availability of an amount
of chemical to biologically significant sites within the body
(National Academies of Sciences and Medicine 2012, 2017). An
emerging idea is to utilize mouse population-based models to bet-
ter estimate internal dose and to better understand the relationship
between the internal dose and the applied dose using data on bio-
availability and pharmacokinetics. It is rare that risk assessors
have human toxicokinetic data available to characterize interindi-
vidual variability, and therefore default assumptions must be
applied. Mouse population resources offer risk assessors an op-
portunity to quantitatively address interindividual variability in
toxicokinetics of chemicals.

The studies demonstrating the use of an MDP to facilitate
population physiologically based pharmacokinetic (PBPK) mod-
eling are few, but encouraging. A recent study by Chiu and coau-
thors that examined metabolism of trichloroethylene (TCE) in 16
inbred mouse strains (and an F1 hybrid) found between a 2- and
10-fold variability in metabolic flux through Phase I and II meta-
bolic pathways (Chiu et al. 2014). Significantly, the population vari-
ability estimates attained from the mouse strains were equal to
population variability estimates derived previously from human tox-
icokinetic studies (Chiu et al. 2009). Genetic differences between
strains determined the extent to which TCE-metabolism genes were
induced following TCE exposure (Bradford et al. 2011).

Although few studies have fully examined toxicokinetic dif-
ferences in the DO and CC RI lines, data are emerging that will
provide key insights to guide future mouse population-based ex-
posure assessments. A recent investigation characterized com-
mon metabolic biotransformation pathways in livers derived
from 29 CC RI lines (Nachshon et al. 2016). A key finding of the
study was that associations between genetic sequence variation
and hepatic drug disposition enzymes were related to alternative
spicing of the encoding genes. Similarly, variation in glutathione-
S-transferase genes that play a protective role against oxidative
stress have been recently shown to vary widely across mouse RI
lines and to have variable expression across tissue types (Lu et al.
2016). As more data become available that catalog metabolic dif-
ferences between strains and among the DO, rationally designed
studies to enable data-driven risk assessments using population
data will become more tractable.

Hazard Identification
Hazard identification is a key part of the risk assessment frame-
work during which both toxicokinetic and toxicodynamic studies
are utilized to determine whether a given exposure increases the
incidence of adverse effects. Key to this process is determination
of whether the adverse effects is likely to occur in humans.
Mouse population–based studies provide a method by which
adverse events that only occur in genetically sensitive individuals
may be detected and incorporated into the analysis. In contrast,
single-strain studies have the potential to miss adverse outcomes
that occur in humans. Potential opportunities for this model lie in
projecting the estimated extent of occurrence of an adverse effect,
defining segments of the population that may be particularly sus-
ceptible (i.e., through termination of genetic predisposition as a
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risk descriptor), and determining the distribution of risk among
population subgroups. Mouse population models also have the
potential to define the shape of a dose–response curve (linear,
nonlinear), the arithmetic mean risk, and subsequently a probalis-
tic estimate of the extent of effects.

An example of this concept is a recent investigation into the
ketolide antibiotic PF-04287881, which was abandoned from phar-
maceutical development following observation of liver biomarker
elevations in clinical trials that were not predicted by classical
rodent stocks used in preclinical screens (Mosedale et al. 2014). In
that study, an MDP approach was used and a subset of susceptible
mouse strains sustained liver injury in response to the drug; mouse
strains that experienced liver injury were subsequently found to
exhibit phospholipidosis in Kupffer cells. This finding was not
entirely surprising given that PF-04287881 is a cationic amphi-
philic drug (CAD) and that phosopholipidosis has been associated
with previously developed CADs, including antiarrhythmics, antide-
pressants, and other antibiotics (Halliwell 1997). Importantly, use of
multiple mouse strains for hazard identification yielded the clini-
cally relevant toxicity; whereas conventional rodent testing did not.

In the case of PF-04287881, the differences in susceptibility
between strains could then be utilized to study the mode of action
of liver injury. Once susceptible and resistant strains were identi-
fied using biochemical and histopathological criteria, a subset of
four strains was utilized for global transcriptomic analysis of liver
tissue. Pathway analysis of transcripts that were altered by the
drug and that were uniquely affected in susceptible strains indi-
cated that PF-04287881-induced phospholipidosis was mediated
by alterations in phospholipid metabolism and lysosomal func-
tion. Furthermore, the liver injury caused by PF-04287881 expo-
sure was linked to changes in expression of genes involved in

protein degradation, potentially leading to accumulation of oxi-
dized proteins (Mosedale et al. 2014).

In a similar study, an MDP approach was utilized to deter-
mine whether genetically sensitive mouse strains could have pre-
dicted clinically significant kidney injury that occurred in an
expanded Phase 1 clinical trial of a novel drug for treatment of
African trypanosomiasis, DB289 (Harrill et al. 2012). As in the
previous example, severe renal injury caused by DB289 in clini-
cal trials was not indicated during conventional toxicity testing in
rodents or nonhuman primates. The clinical trial data indicated a
potential link between genetics and susceptibility to DB289-
induced renal injury because renal toxicity was only apparent in
study subjects enrolled in South Africa, and was absent from sub-
jects enrolled in trials in the countries of Angola, the Democratic
Republic of the Congo, and Sudan. Within the mouse panel, sev-
eral strains were identified that experienced renal injury caused
by DB289 administration, providing another example of a case
where a mouse population model could identify human relevant
toxicities that were absent from conventional screens.

Additional recent proof of principle studies has further demon-
strated the capability of these models to characterize susceptibility
to chemically induced adverse effects, lending credibility for their
use in toxicology research and risk assessment. For example, it
was recently shown that there is up to 3-fold variation across CC
RI strains in the activity of mitochondrial respiratory complexes I-
IV, providing opportunities to identify hazards associated with
agents that disrupt cellular respiration (Hartman et al. 2017).

Dose Response
There is growing interest in utilizing DO mice to set exposure
thresholds for chemicals that may be occupational hazards. A

Figure 2. Potential uses of mouse populations through the risk assessment paradigm.

Environmental Health Perspectives 086002-6



landmark study that employed the DO for this purpose investi-
gated whether current guidelines set for benzene exposures in an
occupational setting were adequately protecting both sensitive
and resistant workers (French et al. 2015). Typical experiments
to identify the “benchmark dose (BMD)” or point-of-departure
for adverse effects are conducted in genetically homogeneous
B6C3F1/J mice. In this DO study, a dose-dependent increase in
benzene-induced chromosomal damage was observed, with a
wide degree of susceptibility reported across the population of
DO mice. Furthermore, the benchmark dose lower bound 10%
(BMDL10) was an order of magnitude lower in the DO mice as
compared with B6C3F1/J mice, and the DO-based estimate of
0:205 ppm benzene was consistent with human exposure data
(Lan et al. 2004). These data suggest that that the increased
genetic diversity in the DO could be exploited to identify a
more accurate concentration threshold that could protect more
workers from the adverse effects of benzene exposure.

Mode of Action
A mouse population–based approach may also be employed to
inform the mode of action for toxicity. A recent demonstration of
this application is a study that utilized a panel of inbred strains to
investigate the molecular mechanisms of genetic sensitivity to
isoniazid-induced steatosis (Church et al. 2014). The study was
conducted as a consortia effort by members of the Health and
Environmental Sciences Institute (HESI)’s Application of
Genomics to Risk Assessment Technical Committee. In that
study, a combined transcriptomic, metabolomic, and pharmaco-
genomic analysis was utilized to provide evidence for a novel hy-
pothesis that isoniazid increases the capacity for formation of
lipid droplets while concurrently reducing the capacity for
exporting stored fat from the hepatocytes in sensitive strains. A
key aspect of this approach is that a subset of sensitive and resist-
ant strains may be selected for downstream analysis after an ini-
tial screen of a larger strain panel. By selecting strains with
certain characteristics, it is possible to reduce costs and complex-
ity of targeted experiments to elucidate toxicity mechanisms.

Mouse population models may additionally be utilized to
identify quantitative biomarkers that are associated with toxicity
sensitivity. An example of this approach is a recent transcrip-
tomic study that was conducted using a panel of inbred strains
(Harrill et al. 2009a). In that study, strains were identified as ei-
ther sensitive or resistant to a high oral dose of acetaminophen.
Global mRNA transcript expression was measured in livers
extracted from all the strains and the data were analyzed such
that strain (genetic background), treatment (acetaminophen or ve-
hicle), and liver injury score (% necrosis) were used as factors in
an ANCOVA model (analysis of covariance). This analysis
allowed for discernment of transcripts with expression that
changed a) with treatment, but not with strain; b) with strain, but
not with treatment; and c) with treatment and strain, and that var-
ied with the amount of hepatocellular necrosis. The 26 transcripts
in the latter group represented genes involved in cell death and
proliferation. This same experimental paradigm could be
extended to metabolomic or proteomic analyses to identify acces-
sible biomarkers that indicate toxicity mode of action in geneti-
cally sensitive individuals.

An added value of using mouse population models for toxi-
cology is the opportunity to determine the genetic basis for sus-
ceptibility to an adverse effect. An understanding of the genetic
basis can be informative for informing the toxicity mode of
action in susceptible individuals, and for informing development
of fit-for-purpose toxicity screens that exploit knowledge of the
genetic basis of an adverse effect. Whole-genome efforts toward
genetic dissection of toxicity traits is aimed at determining genomic

locations (quantitative trait loci; QTL) that contain genetic variation
that influences the toxicity response of interest. Discovering quanti-
tative trait genes (QTGs) in mouse reference populations that affect
toxicity susceptibility have the potential to be translated into
humans, especially where there is high sequence homology (or rea-
sonable orthology of the resultant protein) between mouse and
human species for the QTG of interest.

Extensive research in recent years, including the Human
Genome and HapMap projects, has led to a wealth of information
on genetic polymorphisms in human populations (Manolio et al.
2008). It is reasonable to expect that there are many polymor-
phisms that contribute to adverse xenobiotic responses (or dis-
ease) owing to the observation that base pair sequence variation
among individuals averages 1 in 500–1,000 base pairs (Venter
et al. 2001). It is now possible to identify single nucleotide poly-
morphisms (SNPs) that can serve as biomarkers for identifying
genetically sensitive individuals or subpopulations of individuals.
Predictive genetic tests may have value in risk prediction and
may yield insights into the mode of action of toxicity for xenobi-
otic agents. An example of this concept is the genetic testing
available to patients with HIV who are prescribed the drug abaca-
vir, in which screening for major histocompatibility complex,
class I, B (HLA-B) *5701 substantially reduces the risk of hyper-
sensitivity reactions (Mallal et al. 2008).

There are several recent examples for which mouse reference
populations have been utilized for identification of genetic risk fac-
tors for toxicity outcomes. An exemplar case is a study that investi-
gated behavioral, neurochemical, and transcriptomic responses to
chronic exposure to fluoxetine. In this MDP study, it was observed
that genetic background greatly influenced the therapeutic response,
with 5/30 strains identified as negative responders, 13/30 strains
identified as positive responders to the medication, and the remain-
der of the strains identified as nonresponders (Benton et al. 2012).
Genetic association was found with the gene encoding cellular pro-
liferation/adhesion molecule (Cadm1), which may indicate a poten-
tial role for neuro/gliogenesis in depression. Similarly, the MDP
reference population was utilized to identify genetic risk factors for
liver injury caused by acetaminophen overdose. A gene candidate
for acetaminophen-induced hepatotoxicity, Cd44, was identified by
GWA in mice. A SNP within this gene was subsequently found to
have a clinical association with both asymptomatic elevations in
liver function tests as well as acute liver failure due to acetamino-
phen overdose in susceptible patients (Harrill et al 2009b). Such an
approach has implications for mouse-to-human translational phar-
macogenetics approaches to precision prescribing of medicines. In
addition, understanding the genetic basis of toxicity, and knowledge
of human gene frequencies in a geographic region, may influence
risk assessment for chemicals in the future.

Mouse embryonic fibroblasts (MEFs) that have been derived
from MDP strains may add utility to high-throughput investiga-
tion of drug-induced toxicity risks. A recent study reported the
screening of 65 compounds across 32 strains (Suzuki et al. 2014).
A success of the study was that a QTG was identified that was
associated with rotenone toxicity. This gene, Cybb, was subse-
quently validated experimentally both in vitro and in vivo, pro-
viding a promising test case for utilizing cell-based screens for
pharmacogenetic identification of gene variants that confer toxic-
ity risk (Suzuki et al. 2014).

There are some drawbacks to using an MDP for use in mode
of action studies that aim to identify a genetic basis for an adverse
response. The genetic variation within panels of inbred mouse
strains, although greater than that of standard recombinant inbred
(RI) lines, can be somewhat limited given that most classical
inbred strains are derived from M. m. domesticus. Genetic varia-
tion among classical inbred strains is both limited and unevenly
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distributed across the genome (Yang et al. 2007; Yang et al.
2011). The CC RI lines and DO stock were designed to incorpo-
rate large genetic variation (Churchill et al. 2004). Both the CC
and DO mice have the potential for genomic mapping resolution
down to 1-Mb genomic intervals, which affords higher resolu-
tion genomic mapping than what is possible with an MDP. At
each successive generation, DO mice accumulate approxi-
mately 25 recombination breakpoints. By generation 10, DO
mice harbored approximately 350 breakpoints, a greater number
than the typical F2 mouse, which harbors approximately 28
breakpoints. This large number of breakpoints drives tight
localization of QTL peaks, whereas a very large number of
sequence variants drives increased sensitivity to detect QTLs in
the DO mice.

In the DO study on differential susceptibility to benzene-
induced mutagenesis, genomic mapping was performed to iden-
tify QTGs that were associated with benzene toxicity in DO
mice, as measured by the micronuclei frequency of reticulocytes
from peripheral blood and bone marrow. The investigators identi-
fied a highly significant peak (LOD>20) on chromosome 10 that
contained several genes. Analysis of the effects of founder effect
haplotypes within the QTL interval enabled determination that
DO mice who had inherited the CAST/EiJ founder haplotype
were less sensitive to benzene versus DO mice without the haplo-
type. Sult3a1 was identified as a candidate gene in the region
because it contained alleles that are unique to the CAST/EiJ hap-
lotype. Interestingly, examination of mRNA expression patterns
of this gene in the eight founder strains led to the discovery that
CAST/EiJ mice have a greater expression of Sult3a1 and this
founder strain harbors a copy number expansion of the gene.
Thus, DO mice that harbor the CAST/EiJ haplotype likely have a
greater capacity to detoxify benzene, providing a foundation for
resistance to benzene-induced chromosomal damage. The work-
flow utilized in the benzene study can provide a template for
gaining mechanistic insight into adverse outcomes associated
with drugs or chemical exposures.

In another recently publish DO toxicity study, genetic risk
factors for susceptibility to green tea extract–induced liver injury
were explored (Church et al. 2015). The goal of the study was to
better understand why certain consumers were susceptible to liver
injury to herbal supplements that contained green tea extract,
which was particularly intriguing because there was no apparent
dose relationship in the affected individuals (idiosyncratic effects)
(Navarro et al. 2013). In a large population of DO mice exposed
to the major constituent of green tea extract (epigallocatechin gal-
late), it was found that a small fraction of the animals (16%) sus-
tained a high degree of hepatocellular injury analogous to the
severe human clinical cases. Toxicity testing illustrated the differ-
ence in susceptibility across populations with 35% of the animals
tested being completely resistant to the toxicity (i.e., no evidence
of adverse liver histopathology). Genetic analysis revealed that
sequence variation within a region on chromosome 4 was associ-
ated with the toxicity in mice. Sequence analysis in human clini-
cal cases of liver injury arising from green tea extract–containing
supplements corroborated the findings with significant enrich-
ment in the cases versus controls of variants in three genes; one
of which—Mitofusin 2 (MFN2)—emerged as a particularly inter-
esting candidate risk factor owing to its role in mitochondrial main-
tenance and autophagy as well as promotion of cellular death under
stress conditions (Papanicolaou et al. 2011). Epigallogathechin gal-
late was subsequently shown to inhibit mitochondrial respiratory
complexes under stress conditions (Weng et al. 2014), suggesting
that an interplay between genetic risk factors and the environment
may play a role in clinically important liver injury due to this
compound.

High-Throughput Population Variability
Measurements in Cell Cultures
Although low-throughput dose–response and classical toxicologi-
cal analyses to understand population variability are tractable
in vivo, the high cost of in vivo population studies has generated
significant interest in in vitro models for toxicity screening.
Potential applications include: quantitative dose–response model-
ing of adverse effects, screening libraries of potentially hazardous
compounds for toxicity and functional responses, establishing
molecular signatures of exposure, QTL/eQTL (expression QTL)
mapping to find genetic variants underlying differential suscepti-
bility to various environmental exposures, identifying susceptible
mouse strains for targeted in vivo studies, validating environmen-
tal response networks (using knockdowns), and validating genetic
associations by genome editing (such as CRISPR-Cas9).

Because many of these resources are still in development,
published studies demonstrating proof-of-concept are lacking.
We reviewed in previous sections recent successes in genomic
mapping using mouse embryonic fibroblast cells derived from an
MDP. There are also parallel efforts ongoing to develop embry-
onic stem cells from DO and from CC mice. Predictive Biology,
Inc. (Carlsbad, CA) currently offers testing in the following cell
types derived from DO male and female mice: embryonic stem
cells, cardiomyocytes, and neural progenitor cells. The DO ES
lines have been shown to be euploid and stable (T. Choi, written
communication, May 2016). Cell-based screens using mouse
population cell systems can be used to perform high-throughput
genome-wide analyses of chemical-induced toxicity that can sub-
sequently be functionally validated using human induced pluripo-
tent stem cell (iPS)–derived cells and gene knockdown/knockout
experiments.

Mapping complex traits with DO ES lines offers distinct
advantages to human induced pluripotent stem (iPS) cell lines.
Power calculations have shown that a panel of at least 10,000
human iPS cell lines would be needed to match the mapping
power of 400 DO ES cell lines for GWA studies. This is a conse-
quence of the very low allele frequency of many functional var-
iants in the human genome. Because of the rapid fixation of rare
alleles occurring during brother–sister mating during the genera-
tion of the eight inbred founder genomes of the DO, nonsynony-
mous SNPs (nsSNPs) in the DO have minor allele frequencies of
12.5–50%. This is in sharp contrast to over 96% of nonsynony-
mous coding SNPs in human populations having allele frequen-
cies of 0.5% or less, with more than half of these found only once
in 2,500 human genomes.

Mouse Population Screens Yield Fit-for-Purpose
Disease Models That May Be Used to Define
Sensitive Subpopulations
An emerging concept has been to investigate toxicity in the con-
text of co-morbidities, such as obesity or diabetes, but there are
opportunities to investigate adverse outcomes in a variety of dis-
ease states if the “right” animal model could be identified. Panels
of CC RI lines have been utilized in several efforts to identify
models of disease, particularly in cases in which animal models
are either lacking or have been reported as ineffective using com-
mon rodent strains. For example, research of therapies for Ebola
virus infection using the mouse adapted strain of Ebola virus
(MA-EBOV) was historically restricted to macaques, guinea
pigs, and Syrian hamsters, owing to a failure of common mouse
strains to reproduce the hemorrhagic hallmarks of the human dis-
ease. In a landmark study utilizing 47 recombinant inbred inter-
cross lines of CC mice (CC-RIX), researchers found that genetic
background played an important role in the pathogenesis of
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Ebola infection, with a phenotypic range across CC-RIX hybrids
ranging from complete resistance to severe pathology that was
consistent with Ebola hemorrhagic fever and lethality (Rasmussen
et al. 2014). In addition to these observations, it was observed that
select CC-RIX hybrids experienced lethality without symptoms of
Ebola hemorrhagic fever. Thus, a screening strategy to identify
CC RI lines or CC-RIX hybrids that exhibit pathology consistent
with human disease may advance therapeutic development.

In addition, spontaneous disease observed in CC RI lines may
provide unique opportunities for identifying mouse models of
human medical conditions. One such possibility is the study of
inflammatory bowel disease (IBD), an immune-mediated condi-
tion that is modulated by aberrant responses to intestinal micro-
flora under certain host genetic and environmental contexts.
Although rodent models of IBD had existed, prior models were
reliant upon interventions to induce the disease such as a chemi-
cal induction or introduction of an infectious agent. A CC line
that has been identified as a model for IBD was discovered fortui-
tously when it was observed that there was a high frequency of
spontaneous rectal prolapse in the CC011/Unc line (Rogala et al.
2014). Following observance of the prolapse, animals generally
maintained a good body condition; however, the prolapsed tissue
became necrotic or ulcerated, resulting in deteriorating conditions
that necessitated euthanasia for humane reasons in the affected
animals. Affected animals in the line were found to have hallmark
features of colitis by histological assessment of gastrointestinal
tissues, and no coincident pathogenic infection was found.

The utility of using DO mice to model human disease and
population-level responses has been demonstrated in recent manu-
scripts as well. As with CC mice, DO mice have been employed
as a tool to study a variety of human conditions, including pain
sensitivity (Recla et al. 2014), development of atherosclerosis
(Smallwood et al. 2014), susceptibility toMycobacterium tubercu-
losis infection (Harrison et al. 2014), and neurobehavioral traits
(Logan et al. 2013), including addiction to drugs of abuse
(Dickson et al. 2015).

As new mouse models for complex human disease outcomes
become available and characterized through these new population-
based rodent resources, many possibilities for exploring the under-
standing of gene–environment interactions and genetic susceptibility
to exposures could be undertaken with controlled exposure experi-
ments using these animals.

Considerations for Study Design
It is important to note that the populations under discussion may
all be suitable for standard toxicology screens; however, as dis-
cussed extensively in the NIEHS workshop, it may be advisable
to reserve use of this population for cases in which assessment of
population variability is both desirable and tractable (based on
power/sample size calculations). Practical considerations, such as
availability of strains, should be considered when selecting a
mouse reference population for study.

The phenotype (or experimental outcome) measured is an im-
portant consideration in the design of studies involving mouse
populations. Because mice of various genetic contexts will likely
exhibit different outcomes, it is important to choose a phenotype
for which sampling and measurement error can be minimized.
The more precise the quantitatively measured outcome is, the
less noise there will be in the dataset, and the better the estimate
of variance will be. This is especially critical in cases where the
intent is to use quantitative phenotype information as a starting
input for the GWA models, but is less of a concern for studies
aimed at identifying chemical hazards. Examples of ideally suited
phenotypes for the purposes of genetic mapping can include, but
are not limited to: quantitative pathology scores, organ weights,

or quantitative tissue markers. Special consideration should be
given to utilizing blood-based leakage biomarkers as there may
be differences in transport and clearance rates among genetically
diverse animals that could affect endpoint measures. With that ca-
veat aside, circulating biomarkers have been used successfully to
gain insights into toxicity outcomes within mouse reference
populations.

Although much attention has been focused on the utilization
of population-based rodent models for toxicity testing and to
identify genetic causes of susceptibility to toxicity, it is becoming
increasingly apparent that epigenomic changes play a large role
in toxicant responses. Interstrain susceptibility to genotoxicity for
well-established toxicants is sometimes likely due to strain-
specific epigenetic events in response to the exposure. Therefore,
additional challenges will be to assimilate epigenomic data with
genetic and other omics data for these population-based rodent
models and better predict risks as modulated by epigenetic
changes (Koturbash et al. 2011).

Recent approaches have enabled meta-analysis across rodent
population studies to identify environmentally specific gene
effects. A unique meta-gene by environment (G×E) approach by
Kang et al. was recently conducted across 17 mouse studies
(totaling 4,965 animals) for detection of significant loci that influ-
ence high-density lipoprotein cholesterol levels (Kang et al.
2014). The meta-analysis framework allowed disparate mouse
studies with varying environmental conditions to be analyzed
jointly in a model that treated gene–environment interactions as
random effects. The potential utility of such a model is to com-
bine many smaller studies with different environmental exposures
for the purposes of obtaining significantly higher power and
improved genetic mapping resolution. This meta-G×E strategy
may provide a useful approach for identifying gene by environ-
ment interactions that underlie the architecture of complex traits
and is particularly powerful when applied to the analysis of stud-
ies using mice of varying genetic backgrounds that have been
conducted in different environments.

Beyond the scope of this article, it should be noted that
another variable not currently often considered that can have pro-
found impacts on toxicity testing are common environmental
impacts such as diet. Most toxicity testing is performed in ani-
mals maintained on standardized lab chows that do not recapitu-
late the typical diet of Western countries. Environmental factors
should be well controlled and described to minimize undesired
gene–environment effects.

Rat Resources
Significant progress has been made in recent years toward using
the rat as a species for population-based modeling as the rat has
long been established as a useful model for certain phenotypes
relevant to human physiology and behavior. Many classical toxi-
cology studies have been performed in rat models owing to their
relatively large size that increases the amount of tissue and bio-
fluids that can be harvested for the purposes of toxicologic pa-
thology. Several rat models are available for assessment of
genetic variability, including, but not limited to a) lines bred
selectively for various traits, such as alcohol preference
(McBride et al. 2014); b) inbred strains and recombinant inbred
lines, such as the HxB/BxH RI lines that are derived from SHR
and BN-Lx rats (STAR Consortium et al. 2008; Vanderlinden
et al. 2014); c) heterogeneous outbred stocks (Solberg Woods
2014); and d) genetically modified rats (Li et al. 2013). Work is
currently underway to develop and characterize a Hybrid Rat
Diversity Panel (HRDP); a project that will result in a panel of 30
recombinant inbred lines derived from an original set of nine
founder rat strains (B. Tabakoff, written communication, October
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2016). Population-level investigations can take advantage of the
HRDP and HxB/BxH strains in combination to broaden the
genetic space that can be queried.

Although detailed genetic information for the rat has lagged
behind that of mouse and human species, there are a growing
number of data rich bioinformatics resources that include the Rat
Genome Database and transcriptome browser PhenoGen (Bhave
et al. 2007; Shimoyama et al. 2015). Recent studies have utilized
various rat population resources for identification of gene variants
associated with metabolic syndrome (Gauguier et al. 1996) and
metabonomic traits in the context of diabetes (Dumas et al. 2007).
These resources provide a platform toward using rat models for
assessing genetic susceptibility to environmental exposures.

Final Considerations
The next wave of population-based risk assessment is the ability
to predict human-relevant chemical hazards and to account for
their differential sensitivity to xenobiotic agents in dose–response
modeling and other assessments. Furthermore, regulatory agen-
cies, industry, and academics must establish clear guidelines for
the integration of population variability into toxicity testing
guidances.

A future direction of population-based genetic research is the
ability to tailor risk management for uniquely sensitive subpopula-
tions. Translational aspects in this area will be greatly facilitated
by additional proof-of-concept examples using pharmaceutical
agents for which human data are available. Although there are
promising data that show that GWA can predict human toxicity
responses to xenobiotics across diverse populations, further exam-
ples demonstrating that this method can accurately identify
human-relevant risk factors is necessary. Studies in this arena are
ongoing and we can expect additional published examples soon.

It will take a period of research and development to fully charac-
terize background pathology and biomarker reference ranges for
each mouse population that can serve as a basis of comparison
across toxicity studies. The NTP has a manuscript in preparation
describing clinical pathology reference ranges for the DO and data
for the CC are emerging. A potential additional use of this popula-
tion for toxicology applications is to test candidate toxicity biofluid-
based biomarkers. Population models allow for testing of biomarker
performance in a population space to determine whether a bio-
marker has improved specificity and sensitivity for detecting organ
injury over conventional gold-standard biomarkers.

Significant consideration will need to be given to how to
incorporate mouse population-level data into current paradigms.
For example, it will be important to appropriately account for
variability within populations within benchmark dose assess-
ments. An open question is how to account for the variability
without potentially overestimating risk to human populations;
however, it is expected that methods tailored toward population-
based assessments (such as those used in epidemiological studies
and population studies of pharmacokinetics and pharmacodynam-
ics) may be appropriated for this purpose. This is a subject that is
an area of active investigation and which will require significant
dialog between risk assessors, toxicologists, and basic researchers
with experience in these mouse populations.

For the potential of mouse population models for risk assess-
ment applications to be fully realized, greater emphasis should be
given to collaboration across laboratories and disciplines. Team
research within centers and consortia will greatly facilitate rou-
tine adoption of these models. Together, mouse reference popula-
tions have the potential to provide a framework for integrating
population variability into the study of toxicity outcomes. These
populations provide a foundation for the integration of molecular,

morphological, pathological, and physiochemical data toward a
holistic understanding of the genetic basis of toxicity susceptibility.
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